
Message Integrity

Goal: Message Integrity

Alice wants to send message m to Bob

• don’t fully trust the messenger or
network carrying the message

• want to be sure what Bob receives is
actually what Alice sent

Threat model:

• Mallory can see, modify, forge
messages

• Mallory wants to trick Bob into
accepting a message Alice didn’t send

Alice Mallory Bob
m m′

Solution:
Message Authentication Code (MAC)

One approach:
1. Alice computes v := f(m)

2.

3. Bob verifies that v′ = f(m′),
accepts message iff this is true

Function f ?
Easily computable by Alice and Bob;

not computable by Mallory

(Idea: Secret only Alice & Bob know)

We’re sunk if Mallory can learn
f(x) for any x ≠ m!

e.g. “Attack at dawn”, 628369867…

m, v
Bob

m′, v′
Alice Mallory

Candidate f:
Random function

Input: Any size up to huge maximum

Output: Fixed size (e.g. 256 bits)

Defined by a giant lookup table that’s
filled in by flipping coins

Completely impractical

Provably secure
(Mallory can’t do better
than randomly guessing)

… …

0 → 0011111001010001…
1 → 1110011010010100…
2 → 0101010001010000…

[Why?]

[Why?]

Want a function that’s practical
but “looks random”…

Pseudorandom function (PRF)

Let’s build one:

Start with a big family of functions
f0, f1, f2, … all known to Mallory

Use fk, where k is a secret value
(or “key”) known only to Alice/Bob

k is (say) 256 bits, chosen randomly

Kerckhoffs’s Principle
Don’t rely on secret functions

Use a secret key, to choose from
a function family [Why?]

Formal definition of a secure PRF:
Game against Mallory

1. We flip a coin secretly to get bit b

2. If b=0, let g be a random function
If b=1, let g = fk, where k is a
randomly chosen secret

3. Repeat until Mallory says “stop”:
Mallory chooses x; we announce g(x)

4. Mallory guesses b

We say f is a secure PRF if Mallory can’t
do better than random guessing*

i.e., fk is indistinguishable in practice from a
random function, unless you know k

Important fact: There’s an algorithm
that always wins for Mallory

[What is it?] [How to fix it?]

A solution for Alice and Bob:
1. Let f by a secure PRF

2. In advance, choose a random k known
only to Alice and Bob

3. Alice computes v := fk(m)

4.

5. Bob verifies that v′ = fk(m′),
accepts message iff this is true

[Important assumptions?]

What if Alice and Bob want to send more
than one message?

[Attacks?] [Solutions?]

m, v
Bob

m′, v′
Alice Mallory

k k

Annoying question:
Do PRFs actually exist?

Annoying answer:
We don’t know.

So how do we get a MAC?

Well-studied functions where we
haven’t spotted a problem yet
(e.g. HMAC-SHA256)

Random Functions
- Impractical to implement

Pseudo-Random Functions
- Not known to exist

One-way function…?
- Hash function

Something PRF-like…?
- Hash-based MAC (HMAC)

Hash

N bits

256 bits

Input

Output

MAC

N bits

256 bits

Input

Output

Key
128 bits

Hash function properties

Good hash functions should make it
difficult to find …

First pre-image:
given H(m), find m

Second pre-image:
given m1, find m2 s.t. H(m1) = H(m2)

Collision:
find any m1 != m2 s.t. H(m1) = H(m2)

What is SHA256?
“Cryptographic hash function”

Input: arbitrary length data (No key)
Output: 256 bits

Built with “compression function” h
(256 bits, 512 bits) in → 256 bits out
Designed to be really hairy (64 rounds of this):

Entire algorithm:
1. Pad input to multiple of 512 bits

(using a fixed algorithm [Why?])
2. Break into 512-bit blocks b0, b1, … bn-1

3. y0 = const,
y1 = h(y0,b0),
…,
yi = h(yi-1,bi-1)

4. Return yn

Compression function
Inputs: 256 bits, 512 bits
Outputs: 256 bits

How can we build an arbitrary-length-
input hash function from a fixed-length-
input compression function?

h

M ?

?

?
256 bits

256 bits

512 bits

N bits

h

h

h

H(M)

IV

…

b0

M pad b1

bn-1

…

Merkle–Damgård Construction
- Arbitrary-length input
- Fixed-length output

- Built from fixed-size “compression function”

Arbitrary
length input

Fixed-length
inputs/outputs

Fixed
length output

h

h

b0

b1

IV

H(b0 || b1)

hx

H(b0 || b1 || x)

Length-extension attack
- Given H(m), can compute H(m || x)

for arbitrary x, without knowing m

Other hash functions:

MD5

Once ubiquitous

Broken in 2004

Turns out to be easy to find collisions
(pairs of messages with same MD5 hash)

You’ll investigate this in Project 1

SHA1

Currently widely used

Suspected to be weak

Don’t use in new applications

SHA3

Different “sponge” construction

Not susceptible to length-extension

What about PRF-like functions?
Hash-based MAC (HMAC)

build a MAC from a Hash function!

HMAC-SHA256 see RFC 2104

HMACk(m) =

0x3636…

 





  mckck 21 SHA256SHA256

0x5c5c…
Concatenation

XOR

SHA256 function
takes arbitrary length input,
returns 256-bit output

Message Authentication Code (MAC)
e.g. HMAC-SHA256

vs.

Cryptographic hash function
e.g. SHA256

not a strong PRF

[When should you use HMAC vs a hash?]

Better to use a MAC/PRF (not a hash)

$ openssl dgst -sha256 -hmac <key>

[What if you don’t need a key?]

MAC crypto game

Game against Mallory

1. Give Mallory MAC(K, mi) ∀𝑚𝑖∈𝑀
and M (but not K!)

2. Mallory tries to discover
MAC(K, m′) for a new m′∉𝑀

Other uses for hashes/HMACs?

So Far

The Security Mindset

Message Integrity

Next time …

The classic problem in crypto:

How can Alice send Bob a message,
with confidentiality?

